

Referência: PET.280100 Atualizado em 29/09/2020 Revisão: 6

KIT NEON SCUB-LT C2000

KIT NEON SCUB-LT C8800

Apresentação

O KIT NEON SCUB-LT C2000 / C8800 é composto por um controlador programável NEON DC, um conjunto de bornes montado em um trilho TS35 e um adesivo de identificação e documentação do kit. Sua função principal é substituir de forma fácil e rápida a placa de controle do armário CAC 2000 ou CAC 8800. Essa substituição pode ser realizada em campo, de forma rápida e simples, sem necessidade de novas furações.

Todo suporte mecânico (caixa), de alimentação (transformadores e fontes) e de comunicação (rádio), pode ser mantido original ou substituído se necessário. Uma vez instalado o novo painel pode ser utilizado para controle de unidades de bombeio mecânico, sendo equipado com o firmware de BM do tipo SCUB-LT.

Software, Firmware e Ladder

Ambiente de Programação: SPDSW, versão 4.2.00 ou superior.

<u>Firmware do controlador:</u> scublt_g3s 1.1.07 ou superior

<u>Aplicação Ladder:</u> SCUBLT_NEON_T103_V1205.opj, com biblioteca PADRAO SCUB-LT versão 1.2.05 ou superior.

Configuração do Controlador

Modelo do Controlador: NEON DC 321.400 / 333.400

Alimentação: DC

Canais de Comunicação: seriais RS232-C e/ou Ethernet

COM1 e COM2: Modelo 321.400

COM1, COM2 e Ethernet: Modelo 333.400

Módulo de I/O: HIO120

• 5 entradas digitais optoacopladas :

• 1 PNP ou NPN e 4 PNP.

1 saída digital optoacoplada.

2 entradas analógicas para corrente (4 a 20mA).

1 entrada analógica para célula de carga.

Dados Técnicos		
Gerais		
Alimentação	10 a 30V DC	
Isolação	Sim (2kV)	
Proteção	Contra curto circuito, contra sobretensão e sobrecarga	
Consumo	3W máximo	
Temperatura de Operação	0 a 60 °C	
Temperatura de Estocagem	-20 a 70 °C	
Umidade Relativa	+- 95% sem condensação	
Peso	450g aproximadamente	
Grau de Proteção	IP30	
Dimensões C2000 aproximada	185 (L) x 155 (A) x 186 (P) mm	
Dimensões C8800 aproximada	270 (L) x 155 (A) x 186 (P) mm	
Fixação	Trilho DIN TS35	

Referência: PET.280100 Atualizado em 29/09/2020 Revisão: 6

Comunicação Serial RS232-C		
Comunicação Serial R3232-C		
Baud Rate	1200 a 115200 Bauds	
Número de bits	7 ou 8 bits	
Paridade	Par / Ímpar / Nenhuma	
Stop bit	1 ou 2	
Controle de fluxo	Sim, somente para a COM1 (*)	
Conector	Conector SUB-D fêmea, 9 pinos (DB9) na configuração tipo DTE	

(*) Caso a opção de controle de fluxo estiver habilitada para COM1, a COM2 é automaticamente desabilitada. Ver pinagem de configuração do conector DB9.

· Dados Técnicos de I/Os

Entradas Digitais	
Quantidade de canais	5
Tipo de entrada	IO: PNP ou NPN I1 a I4: PNP
Tensão de operação	10 a 30V DC
Faixa de detecção de nível 0	05V DC
Faixa de detecção de nível 1	1030V DC
Isolação	Sim, 1kV RMS
Proteção	Contra inversão de polaridade

Saída Digital	
Quantidade de canais	1
Tipo de saída	PNP
Tensão de operação	10 a 30V DC
Isolação	Sim, 1kV RMS
Corrente máxima por canal	500mA
Tensão máxima (chaveamento)	30V DC
Proteção	Contra surto e curto- circuito

Frequência máxima de operação das entradas e saída digital é diretamente dependente do tempo de varredura do programa ladder corrente, podendo chegar até o limite de 3kHz.

Entradas Analógicas		
2		
0 a 20 mA ou 4 a 20mA		
12 bits		
125 Ohms		
Contra surto e sobretensão		

Entrada para Célula d	Entrada para Célula de Carga		
Quantidade de canais	1		
Tipo de entrada	Sinais a 4 fios		
Tensão de excitação	4,096V		
Resolução	15 bits com sinal		
Sensibilidade	2mV/V		
Impedância de carga	350 ohms		
Isolação	Sim - isolação galvânica de 1kV		
Proteção	Contra surto e ESD (Padrão IEC 61000-4-2)		

Conexões do Controlador

Ilustração do NEON com canais seriais RS232-C

Referência: PET.280100 Atualizado em 29/09/2020 Revisão: 6

Conector X10	Descrição do sinal
1	10 a 30V DC
2	0V
3	Terra

Conector X1	Identificador	Descrição
1	VCC	Alimentação de referência para saída digital (10 a 30V DC)
2	00	Saída digital O0
3	0V DO	Referência 0V para VCC e saída digital 00
4	I0+	Referência positiva para entrada digital I0
5	10-	Referência negativa para entrada digital I0
6	I1	Entrada digital I1
7	I2	Entrada digital I2
8	I3	Entrada digital I3

Conector X2	Identificador	Descrição
1	I4	Entrada digital I4
2	0V DI	Comum para as entradas digitais I1 a I4
3	E0	Entrada analógica E0
4	E1	Entrada analógica E1
5	OV AN	Referência GND dos canais analógicos (0V)
6	V+	Alimentação positiva da célula de carga
7	S+	Sinal positivo da célula de carga
8	S-	Sinal negativo da célula de carga
9	V-	Alimentação negativa da célula de carga
10	Terra	Entrada para conexão de aterramento

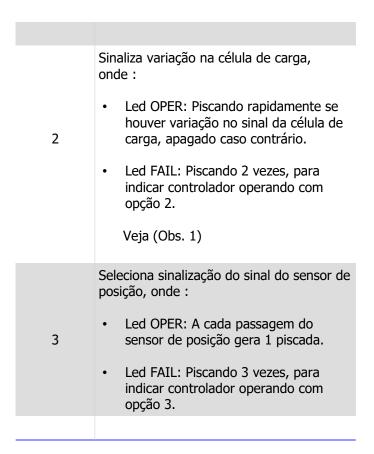
 Pinagem dos conectores DB9 – Fêmea 			
DB9	Sinal	Direção	Descrição
1	n.u.		0 Volt
2	RX1	Entrada	Receive Data da COM1
3	TX1	Saída	Transmit Data da COM1
4	n.u		
5	GND		Referência dos sinais de comunicação — 0V
6	n.u.		
7	TX2 / RTS1 (*)	Saída	Transmit Data da COM2 / Request to Send da COM1
8	RX2 / CTS1 (*)	Entrada	Receive Data da COM2 / Clear to Send da COM1
9	5V DC		Alimentação para módulo externo. Não utilizar

Comunicação Serial

n.u. – Não utilizado

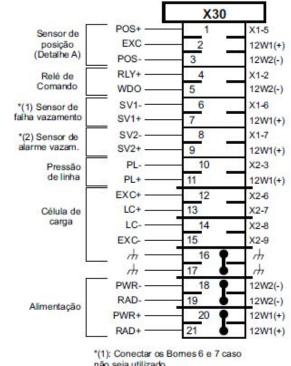
(*) Caso a opção de controle de fluxo estiver habilitada para COM1, a COM2 é automaticamente desabilitada.

com módulos não homologados para esta conexão.

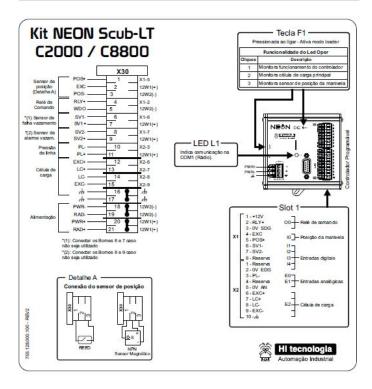

Protocolos de aplicação disponíveis:

- SCP-HI
- MODBUS-RTU
- ASCII

Tecla de Função F1		
Códi	gos de cliques associados a tecla F1	
Quantidade de cliques	Descrição	
1	Seleciona sinalização <i>default</i> do NEON como PLC, onde :	
	 Led OPER: Sinalizações padrões do PLC (ver manual do PLC NEON) 	
	 Led FAIL: Sinalizações padrões do PLC (ver manual do PLC NEON) 	



Referência: PET.280100 Atualizado em 29/09/2020 Revisão: 6

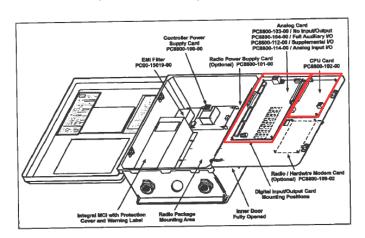

- Obs. 1: Na opção 2, se manter a tecla F1 pressionada continuamente por mais de 5 segundos realiza o zero da célula de carga. Neste caso, quando executa o ajuste de zero liga o led FAIL. Ao liberar a tecla F1, retorna para o modo de sinalização default do PLC.
- Obs. 2 : Após 3 segundos sem pressionar a tecla F1 é realizado o tratamento do código associada ao número de cliques que pressionou a tecla F1.
- Obs. 3 : Cada opção selecionada persiste por um tempo máximo de 5 minutos, após retorna para a sinalização default do NEON como PLC.

Conexões do conjunto de Bornes

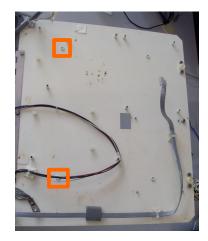
- não seja utilizado
- *(2): Conectar os Bornes 8 e 9 caso
- não seja utilizado

Adesivo de Documentação

Referência: PET.280100 Atualizado em 29/09/2020 Revisão: 6


Fixação no Armário CAC 2000

Fixação do KIT NEON SCUB-LT C2000 no armário de comando do CAC 2000.



Fixação no Armário CAC 8800

Fixação do KIT NEON SCUB-LT C8800 no armário de comando do CAC 8800. Remover os módulos **CPU Card PC8800-102-00** e **Analog Card PC8800-104-00** localizados na parte de trás da porta interna.

Fixar o trilho do KIT nos furos que estão posicionados na região central esquerda de trás da porta interna do armário.

Referência: PET.280100 Atualizado em 29/09/2020 Revisão: 6

Colar o adesivo de documentação na parte de trás da porta externa, abaixo da janela, sobre o adesivo de documentação já existente no armário.

Codificação do Produto

Código HI	Descrição
300.280.100.000	KIT NEON SCUB-LT C8800 para armário de comando CAC 8800, com NEON com 2 canais seriais
300.280.101.000	KIT NEON SCUB-LT C8800 para armário de comando CAC 8800 com NEON com 2 canais seriais e Ethernet
300.280.200.000	KIT NEON SCUB-LT C2000 para armário de comando CAC 2000 com NEON com 2 canais seriais
300.280.201.000	KIT NEON SCUB-LT C2000 para armário de comando CAC 2000 com NEON com 2 canais seriais e Ethernet